
「健康な」ミトコンドリアを持つヒト皮膚細胞 (水色): NLRP10「煙検出器」 (黄緑) は、核 (青紫) を除いて、細胞の内容物全体に分布しています。 クレジット: Kim S. Robinson/Skin Research Institute Singapore
ボン大学が実施した研究プロジェクトは、中期的に皮膚と腸の疾患の治療法の開発に有望です。
ボン大学とシンガポール国立大学の科学者は、新しい細胞内「煙検出器」を発見しました。 このセンサーは、エネルギーを供給する細胞の原動力であるミトコンドリアへの損傷を細胞に警告します。 このセンサーの機能不全は、慢性的な皮膚の状態につながる可能性があります。 この発見は、健康な心臓と腸の機能の維持にも影響を与える可能性があります。 調査結果は最近ジャーナルに掲載されました 自然免疫学.
体内のすべての細胞には、その機能を監視する多数のセンサーがあります。 後にアラームを鳴らす人もいます[{” attribute=””>virus attack, for instance; others kick in when any kind of damage threatens the cell’s survival. “We have now discovered that a molecule called NLRP10 also acts as a sensor,” explains Prof. Dr. Eicke Latz, head of the Institute of Innate Immunity at the University Hospital Bonn. “This was completely unknown until now.”
Figuratively speaking, NLRP10 detects when the mitochondria in the cell start to smoke due to some malfunction. These are the microscopic power plants that provide the energy for cellular functions. As soon as an NLRP10 sensor detects damage to mitochondria, it sets off a complicated process. This creates a so-called inflammasome, a complex molecular machine. Its activity ultimately causes the cell to perish and be disposed of by summoned immune cells.

If the mitochondria (light blue) are damaged, the NLRP10 “smoke detector” sounds the alarm and forms with other proteins into an inflammasome (red). Ultimately, this leads to the demise of the cell and its disposal. Credit: Kim S. Robinson/Skin Research Institute Singapore
Fire alarm prevents long-lasting smoldering fire
“This process is hugely important,” explains Latz, who is also the spokesperson for the Cluster of Excellence ImmunoSensation2 and a member of the Transdisciplinary Research Area “Life and Health” at the University of Bonn. This is because the inflammasome ensures that the fire is stamped out straight away, which prevents a prolonged smoldering fire that would damage other parts of the tissue. “Disruption of this mechanism can result in chronic inflammation,” the researcher emphasizes. “Killing cells with mitochondrial defects may sound drastic. Ultimately, however, this step prevents more serious consequences.”
Not all cells in the body have an NLRP10 sensor. The “fire detector” occurs primarily in the outermost skin layer, the stratum granulosum. The skin is directly exposed to environmental stimuli such as UV radiation, but also pathogens. This could potentially result in accumulated damage. The mechanism ensures that affected cells are effectively disposed of. “If a mutation causes the NLRP10 sensor to malfunction, this can result in a chronic skin inflammation called atopic dermatitis,” explains Dr. Tomasz Próchnicki, who performed an important part of the experiments for his doctorate in Latz’s research group.
The sensor is also found in the intestinal wall and heart
Large quantities of NLRP10 are also found in the intestinal wall cells. These also have regular contact with pathogens and potentially harmful substances. Another organ in which the sensor can be detected is the heart: It is particularly dependent on a well-functioning energy supply. This may make it especially important to quickly kill and replace cells with defective mitochondria.
The study may potentially also open up new therapeutic perspectives. “It is conceivable to specifically modulate the NLRP10 sensor using certain substances in order to stimulate the formation of inflammasomes,” Latz explains. “This approach might enable chronic skin diseases to be better controlled.”
Reference: “Mitochondrial damage activates the NLRP10 inflammasome” by Tomasz Próchnicki, Matilde B. Vasconcelos, Kim S. Robinson, Matthew S. J. Mangan, Dennis De Graaf, Kateryna Shkarina, Marta Lovotti, Lena Standke, Romina Kaiser, Rainer Stahl, Fraser G. Duthie, Maximilian Rothe, Kateryna Antonova, Lea-Marie Jenster, Zhi Heng Lau, Sarah Rösing, Nora Mirza, Clarissa Gottschild, Dagmar Wachten, Claudia Günther, Thomas A. Kufer, Florian I. Schmidt, Franklin L. Zhong and Eicke Latz, 20 March 2023, Nature Immunology.
DOI: 10.1038/s41590-023-01451-y
In addition to the University Hospital and the University of Bonn, the Skin Research Institute of Singapore, the Technical University of Dresden and the University of Hohenheim were involved in the work. The study was funded by the German Research Foundation (DFG), by EU funds under the European Union’s Horizon 2020 program, by the Helmholtz Association, and by the Nation Research Foundation in Singapore.