
磁場イメージング用の空間分解 ODMR (光学的に検出された磁気共鳴) システムの図。 クレジット: 励起子科学
UNSWシドニーの研究者は、OLEDを使用して磁場をイメージングするチップスケールの方法を開発し、スマートフォンをポータブル量子センサーに変換する可能性があります. この技術はよりスケーラブルで、レーザー入力を必要としないため、デバイスが小型化され、大量生産が可能になります。 この技術は、遠隔医療診断や材料欠陥の識別に使用できます。
スマートフォンは、有機発光ダイオード (OLED) を使用して磁場をイメージングする新しいチップスケールのアプローチのおかげで、いつの日かポータブルな量子センサーになる可能性があります。
UNSW Sydney の ARC Center of Excellence in Exciton Science の研究者は、フラット スクリーン テレビ、スマートフォン画面、およびその他のデジタル ディスプレイで一般的に見られる半導体材料の一種である OLED を使用して、磁気共鳴を使用して磁場をマッピングできることを実証しました。
磁場のセンシングは、科学研究、産業、および医療において重要な用途があります。
権威ある雑誌に掲載されました

Dr. Rugang Geng working at UNSW Sydney. Credit: Exciton Science
The majority of existing quantum sensing and magnetic field imaging equipment is relatively large and expensive, requiring either optical pumping (from a high-powered laser) or very low cryogenic temperatures. This limits the device integration potential and commercial scalability of such approaches.
By contrast, the OLED sensing device prototyped in this work would ultimately be small, flexible, and mass-producible.
The techniques involved in achieving this are electrically detected magnetic resonance (EDMR) and optically detected magnetic resonance (ODMR). This is achieved using a camera and microwave electronics to optically detect magnetic resonance, the same physics which enables Magnetic Resonance Imaging (MRI).
Using OLEDs for EDMR and ODMR depends on correctly harnessing the spin behavior of electrons when they are in proximity to magnetic fields.
OLEDs, which are highly sensitive to magnetic fields, are already found in mass-produced electronics like televisions and smartphones, making them an attractive prospect for commercial development in new technologies.
Professor Dane McCamey of UNSW, who is also an Exciton Science Chief Investigator, said: “Our device is designed to be compatible with commercially available OLED technologies, providing the unique ability to map magnetic field over a large area or even a curved surface.
“You could imagine using this technology being added to smartphones to help with remote medical diagnostics, or identifying defects in materials.”
First author Dr. Rugang Geng of UNSW and Exciton Science added: “While our study demonstrates a clear technology pathway, more work will be required to increase the sensitivity and readout times.”
Professor McCamey said that a patent has been filed (Australian Patent Application 2022901738) with a view toward the potential commercialization of the technology.
Reference: “Sub-micron spin-based magnetic field imaging with an organic light emitting diode” by Rugang Geng, Adrian Mena, William J. Pappas and Dane R. McCamey, 15 March 2023, Nature Communications.
DOI: 10.1038/s41467-023-37090-y