ミュンヘン工科大学の研究者は、CO2 から必須アミノ酸 L-アラニンを生成する持続可能な方法を開発しました。 このプロセスは人工光合成を使用し、CO2 をメタノールに変換してから L-アラニンに変換します。 この新しい方法は、従来の農業よりもスペースを必要とせず、より持続可能な未来のためにバイオエコノミーと水素経済を組み合わせる可能性を強調しています。
研究者は温室効果ガス CO2 から重要なアミノ酸を生産します
- 世界で高まる食料需要
- メタノールを中間生成物とするバイオテクノロジープロセス
- 植物栽培に比べて必要な土が少ない
絶えず増加する世界人口への食糧供給を確保すると同時に環境を保護することは、多くの場合、相反する目的です。 現在、ミュンヘン工科大学 (TUM) の研究者は、一種の人工タンパク質を使用して栄養タンパク質を合成製造する方法の開発に成功しました。[{” attribute=””>photosynthesis. The animal feed industry is the primary driver of high demand for large volumes of nutritional protein, which is also suitable for use in meat substitute products.
A group led by Prof. Volker Sieber at the TUM Campus Straubing for Biotechnology and Sustainability (TUMCS) has succeeded in producing the amino acid L-alanine, an essential building block in proteins, from the environmentally harmful gas CO2. Their indirect biotechnological process involves methanol as an intermediate. Until now, protein for animal feed has been typically produced in the southern hemisphere with large-scale agricultural space requirements and negative consequences for biodiversity.

Artificial photosynthesis for environmentally friendly food production, from left: PhD student Vivian Willers und Prof. Volker Sieber. Credit: Otto Zellmer / TUM
The CO2, which is removed from the atmosphere, is first turned into methanol using green electricity and hydrogen. The new method converts this intermediate into L-alanine in a multi-stage process using synthetic enzymes; the method is extremely effective and generates very high yields. L-alanine is one of the most important components of protein, which is essential to the nutrition of both humans and animals.
Prof. Sieber, of the TUM Professorship for Chemistry of Biogenic Resources, explains: “Compared to growing plants, this method requires far less space to create the same amount of L-alanine, when the energy used comes from solar or wind power sources. The more efficient use of space means a kind of artificial photosynthesis can be used to produce the same amount of foodstuffs on significantly fewer acres. This paves the way for a smaller ecological footprint in agriculture.”
Bioeconomy and hydrogen economy in combination
The manufacture of L-alanine is only the first step for the scientists. “We also want to produce other amino acids from CO2 using renewable energy and to further increase efficiency in the realization process,” says co-author Vivian Willers, who developed the process as a doctoral candidate at the TUM Campus Straubing. The researchers add that the project is a good example of how bioeconomy and hydrogen economy in combination can make it possible to achieve more sustainability.
Reference: “Cell-free enzymatic L-alanine synthesis from green methanol” by Vivian Pascal Willers, Manuel Döring, Barbara Beer and Volker Sieber, 23 January 2023, Chem Catalysis.
DOI: 10.1016/j.checat.2022.100502