[ad_1]

2019 年 8 月に撮影されたこの Sentinel-2 衛星画像では、グリーンランド北東部の氷に溶けた水の明るい青色の池が点在しています。グリーンランド上空を流れる大気中の川が氷河の融解を加速させ、その結果、溶けたプールと川が周囲の氷よりも多くの日光を吸収し、氷の速度をさらに速めます。溶けた。 クレジット: センチネル ハブ
大気中の河川は、グリーンランド北部の氷河融解の加速に寄与しています。これは、これらの水分の流れによって引き起こされる温暖化条件が、より多くの太陽光を吸収する融解水プールと河川をもたらすためです。 気候変動が大気河川内の水分輸送の増加につながる場合、この状況は悪化する可能性があります。
ウィスコンシン大学マディソン校の新しい研究によると、大気中の川 – 空に長く集中した水分の流れ – は、グリーンランド北部で氷河の融解を加速する複雑な条件の重要な要因です。
ワシントン大学マディソン校の宇宙科学工学センターの研究者であるカイル・マッティングリーが率いるグリーンランド上の水分の川に関する新しい研究が、最近ジャーナルに掲載されました。
Greenland is covered by a 3,000-meter (9,800-foot) thick ice sheet that contains enough water to raise sea levels by 7 meters, or 23 feet. For millennia, it has played a major role in regulating Earth’s temperature and climate, but that stability is at risk due to climate change.
Warming conditions begin with atmospheric rivers that form on the northwest side of Greenland and move eastward, creating what are known as Foehn winds. The winds commonly occur when moist air meets an elevation change like a mountain or the steep Greenland coastline. As that wet air climbs higher, it condenses and can precipitate in the form of rain or snow, releasing heat into the atmosphere. Now warmer and dryer, the air continues to flow over the ice sheet and back down the northeast side of Greenland.
According to Mattingly, these warming conditions are amplified over the northeast Greenland ice stream, an area of fast-moving ice that extends far into the interior and drains a huge chunk of the ice sheet into the ocean. The increase of warm air conditions from atmospheric rivers results in meltwater pools and rivers that absorb more sunlight than the nearby glacier.
“The amount of moisture transported within atmospheric rivers is projected to increase in climate warming scenarios,” says Mattingly. “This may increase melt impacts in northeast Greenland if atmospheric circulation patterns continue to favor atmospheric rivers tracking into northwest Greenland.”
Reference: “Increasing extreme melt in northeast Greenland linked to foehn winds and atmospheric rivers” by Kyle S. Mattingly, Jenny V. Turton, Jonathan D. Wille, Brice Noël, Xavier Fettweis, Åsa K. Rennermalm and Thomas L. Mote, 29 March 2023, Nature Communications.
DOI: 10.1038/s41467-023-37434-8
This research was supported by grants from the NASA Polar Radiant Energy in the Far InfraRed Experiment mission (80NSSC18K1485) and the French National Research Agency (ANR-20-CE01-0013).
[ad_2]
Source link