に

重要な開発として、研究者は、調整可能な「ブリッジ」を使用してグラフェン ストリップを接続することにより、調整可能な特性を備えた新しいグラフェン ナノ構造を作成しました。 この発見は、量子コンピューティングと再生可能エネルギーのアプリケーションに影響を与える可能性があります。
- CiQUS、ICN2、カンタブリア大学、DIPC、および DTU の科学者が力を合わせて、調整可能な特性を備えたレンガ単位のカーボン ナノ回路を構築する多目的な方法を開発しました。
- 可能なアプリケーションには、将来の電子デバイス、量子コンピューター用の回路、および再生可能エネルギー用の熱電ナノ材料が含まれます。
順応性のある橋でつながれたレンガの積み重ねでできた建物があると想像してみてください。 橋を変更するノブを引くと、建物の機能が変わります。 素晴らしいと思いませんか?
カタロニア ナノサイエンス ナノテクノロジー研究所 (ICN2) および ICREA の Aitor Mugarza 教授が率いる研究チームと、サンティアゴ デ カンポステーラ大学の生物化学および分子材料研究センターのディエゴ ペーニャ教授 ( CiQUS-[{” attribute=””>USC), Dr Cesar Moreno, formerly a member of ICN2’s team and currently a researcher at the University of Cantabria, and Dr Aran Garcia-Lekue, from the Donostia International Physics Center (DIPC) and Ikerbasque Foundation, has done something analogous, but at the single-atom scale, with the aim of synthesizing new carbon-based materials with tunable properties.
As explained in a paper just published in the Journal of the American Chemical Society (JACS) and featured on the cover of the issue, this research is a significant breakthrough in the precise engineering of atomic-thin materials —called “2D materials” due to their reduced dimensionality. The proposed fabrication technique opens exciting new possibilities for materials science, and, in particular, for application in advanced electronics and future solutions for sustainable energy.

The research has been featured in the cover of the Journal of the American Chemical Society (JACS). Credit: Dr. Maria Tenorio and Dámaso Torres · ICN2
The authors of this study synthesized a new nanoporous graphene structure by connecting ultra-narrow graphene strips, known as “nanoribbons,” by means of flexible “bridges” made of phenylene moieties (which are portions of larger molecules). By modifying in a continuous way the architecture and angle of these bridges, the scientists can control the quantum connectivity between the nanoribbon channels and, ultimately, fine-tune the electronic properties of the graphene nanoarchitecture. The tunability could also be controlled by external stimuli, such as strain or electric fields, providing opportunities for different applications.
These ground-breaking findings, resulting from a collaboration between top-tier Spanish institutions (CiQUS, ICN2, University of Cantabria, DIPC) and the Technical University of Denmark (DTU), shows that the proposed molecular bridge strategy can have a great impact on the synthesis of new materials with tailored properties and is a powerful tool for the realization of quantum circuits. These perform operations similar to those of conventional circuits, although unlike the latter, quantum circuits leverage quantum effects and phenomena. The design and implementation of these systems are extremely relevant to the development of quantum computers.
But the potential applications of the approach proposed in this study go beyond future electronic devices and computers. In fact, it could also lead to the development of thermoelectric nanomaterials, which can have an important impact in renewable energy generation and waste heat recovery, therefore addressing another crucial societal challenge.
Reference: “Molecular Bridge Engineering for Tuning Quantum Electronic Transport and Anisotropy in Nanoporous Graphene” by César Moreno, Xabier Diaz de Cerio, Manuel Vilas-Varela, Maria Tenorio, Ane Sarasola, Mads Brandbyge, Diego Peña, Aran Garcia-Lekue and Aitor Mugarza, 29 March 2023, Journal of the American Chemical Society.
DOI: 10.1021/jacs.3c00173