Health Care Market Research

All Important News



抽象的な 2 つの光子の図

ポーツマス大学のチームは、量子干渉と周波数分解サンプリング測定を含む方法により、前例のない精度の測定を達成しました。 このブレークスルーは、ナノ構造と生体サンプルのイメージングを強化し、光ネットワークにおける量子強化推定を改善する可能性があります。

研究者チームは、2 つの光子間の時間遅延の測定において、量子物理学が可能にする究極の感度を実証しました。



研究は、で科学者のチームによって行われました[{” attribute=””>University of Portsmouth, led by Dr. Vincenzo Tamma, Director of the University’s Quantum Science and Technology Hub.

Dr. Tamma said: “Our technique exploits the quantum interference occurring when two single photons impinging on the two faces of a beam-splitter are indistinguishable when measured at the beam-splitter output channels. If, before impinging on the beam splitter, one photon is delayed in time with respect to the other by going through or being reflected by the sample, one can retrieve in real time the value of such a delay and therefore the structure of the sample by probing the quantum interference of the photons at the output of the beam splitter. 

“We showed that the best precision in the measurement of the time delay is achieved when resolving such two-photon interference with sampling measurements of the two photons in their frequencies. Indeed, this ensures that the two photons remain completely indistinguishable at detectors, irrespective of their delay at any value of their sampled frequencies detected at the output.”

The team proposed the use of a two-photon interferometer to measure the interference of two photons at a beam splitter. They then introduced a technique based on frequency-resolving sampling measurements to estimate the time delay between the two photons with the best possible precision allowed by nature, and with an increasing sensitivity at the decreasing of the photonic temporal bandwidth.

Dr. Tamma added: “Our technique overcomes the limitations of previous two-photon interference techniques not retrieving the information on the photonic frequencies in the measurement process.

“It allows us to employ photons of the shortest duration experimentally possible without affecting the distinguishability of the time-delayed photons at the detectors, and therefore maximizing the precision of the delay estimation with a remarkable reduction in the number of required pairs of photons.  This allows a relatively fast and efficient characterization of the given sample paving the way to applications in biology and nanoengineering.”  

The applications of this breakthrough research are significant. It has the potential to significantly improve the imaging of nanostructures, including biological samples, and nanomaterial surfaces. Additionally, it could lead to quantum-enhanced estimation based on frequency-resolved boson sampling in optical networks.

The findings of the study are published in the journal Physical Review Applied.

Reference: “Ultimate Quantum Sensitivity in the Estimation of the Delay between two Interfering Photons through Frequency-Resolving Sampling” by Danilo Triggiani, Giorgos Psaroudis and Vincenzo Tamma, 24 April 2023, Physical Review Applied.
DOI: 10.1103/PhysRevApplied.19.044068


Source link