Health Care Market Research

All Important News

SpyLigation は光のフラッシュでスイッチを切り替えます

healthcaremarketresearch.news


SpyLigation 顕微鏡 2D および 3D 画像

ワシントン大学のハスキーのロゴと犬の 2D および 3D 顕微鏡画像は、タンパク質がいつどこでオンになるかを正確に制御する新しい化学技術 SpyLigation を使用して作成されました。 クレジット: Cole DeForest Research Group

この光活性化技術は、組織工学、再生医療、身体の仕組みの理解に応用できる可能性があります。

科学者は、光活性化 SpyLigation を開発しました。これは、光を使用して生細胞内外のタンパク質機能を活性化する方法です。 これは、組織工学、再生医療、および身体プロセスの理解に応用できる可能性があります。 この技術は、化学的に修飾されたタンパク質断片を光で結合することを含み、タンパク質の輝きを制御し、ヒト細胞内のタンパク質を活性化することで実証されています。

科学者は光を使って、生細胞の内外でタンパク質の機能を活性化できるようになりました。 光活性化 SpyLigation と呼ばれるこの新しい方法は、通常はオフになっているタンパク質をオンにして、研究者がそれらをより詳細に研究および制御できるようにすることができます。 この技術は、組織工学、再生医療、および身体の仕組みの理解に使用できる可能性があります。

タンパク質は、プロセシングを含む、生物学におけるほぼすべての重要なタスクを実行します[{” attribute=””>DNA, metabolizing nutrients, and fighting off infections. When, where, and how proteins become active is important for a variety of biological processes. Increasingly, scientists are also exploring whether protein functions can be turned on and off to treat disease.

“With new tools for controlling protein function, particularly those that offer controlled activation in time and space, we are working towards engineering complex tissue for transplantation,” said senior author Cole A. DeForest, a Weyerhaeuser Endowed Associate Professor of Chemical Engineering at the University of Washington College of Engineering and an associate professor of bioengineering, a joint department at the UW College of Engineering and School of Medicine. 

“Since many more people could benefit from tissue or organ transplants than there are available donors,” he said, “these methods offer real promise in combating the organ shortage crisis.”

As reported April 17 in the journal Nature Chemistry, a team led by Emily Ruskowitz and Brizzia Munoz-Robles from the DeForest Research Group has shown that chemically modified protein fragments can be joined together into functional wholes using brief flashes of light.

The scientists applied their new method to control the glow of a green fluorescent protein derived from Japanese eel muscle. Inactive fragments of that protein were blended and set into a Jell-O-like gel. Then lasers were used to irreversibly recombine those fragments into complete, glowing proteins. By controlling the path of the laser, a precise pattern of glowing proteins could be formed. The scientists etched microscopic images of a husky, their university mascot, into the gel. They also used lasers to create a glowing 3D image of a dog not much taller than a human hair.

The team also showed they could activate proteins inside human cells. Three minutes of light exposure was enough to turn on specific proteins involved in genome editing. Such a tool could one day be used to direct genetic changes to very specific areas of the body.

Similar to so-called click chemistry, which was the subject of the 2022 Nobel Prize in Chemistry, light-activated SpyLigation allows modified proteins to react with one another inside living systems. Extending beyond prior approaches, however, the new method allows for precise control over when and where such chemical reactions occur.

Reference: “Spatiotemporal Functional Assembly of Split Protein Pairs through a Light-Activated SpyLigation” 17 April 2023, Nature Chemistry.
DOI: 10.1038/s41557-023-01152-x

This work was supported by a CAREER Award (DMR 1652141) and grants (DMR 1807398, CBET 1803054), from the National Science Foundation, as well as a Maximizing Investigators’ Research Award (R35GM138036) from the National Institutes of Health. Student fellowship support was provided by the Institute for Stem Cells & Regenerative Medicine, and the Mary Gates Endowment for Students at the University of Washington. Part of this work was conducted with instrumentation provided by the Joint Center for Deployment and Research in Earth Abundant Materials. The Thorlabs multiphoton microscope was acquired with and operated under support from the Washington Research Foundation, UW College of Engineering, UW Medicine Institute for Stem Cells and Regenerative Medicine, and the UW chemical engineering, bioengineering, chemistry, and biology departments.

DeForest is an investigator at UW Medicine’s Institute for Protein Design and Institute for Stem Cell and Regenerative Medicine, and the UW Molecular Engineering & Science Institute. 





Source link